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Abstract

The present paper discusses the benefits of utilizing

generalizability theory in lieu of classical test theory.

Generalizability theory subsumes and extends the precepts of

classical test theory by estimating the magnitude of multiple

sources of measurement error and their interactions simultaneously

in a single analysis. Since classical test theory examines only

one source of measurement error at a time (e.g., occasions, forms,

or internal consistency), it is not possible to concurrently

estimate the magnitudes of all sources of measurement error and

the magnitude of measurement error interaction effects. Thus, the

present paper explores the shortcomings of classical test theory

and the strengths afforded by employing generalizability theory. A

small heuristic data set is utilized to make the discussion

concrete.
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Why Generalizability Theory is Essential and Classical

Test Theory is Often Inadequate

Inquiry in the social sciences has always been concerned with

obtaining accurate and reliable measurements so that substantive

studies are based on the analysis of meaningful data (Eason,

1991). Since science is concerned primarily with repeatable and

replicable experiments, the influence of random effects that might

contaminate results (e.g., measurement error, sampling error)

needs to be examined and reduced. Science, therefore, is

constrained and influenced by the soundness of measuring

instruments and the dependability of the data generated by them.

As Nunnally (1982) stated,

Science is concerned with repeatable experiments. If

data obtained from experiments are influenced by random

errors of measurement, the results are not exactly

repeatable. Thus, science is limited by the reliability

of measuring instruments and by the reliability with

which scientists use them. (p. 1589)

The dependability of data generated from measuring

instruments, however, is an area that is frequently overlooked in

the social sciences, both in practice and in educating student-

researchers. Pedhazur and Schemlkin (1991, pp. 2-3) noted that,

Measurement is the Achilles' heel of sociobehavioral

research. Although most programs in sociobehavioral

sciences... require a medium of exposure to statistics

and research design, few seem to require the same where
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Generalizability Theory 4

measurement is concerned.... It is, therefore, not surprising

that little or no attention is given to the properties of

measures used in many research studies.

The generation of accurate and reliable data, therefore, is

critical to strong scientific inquiry and essential to furthering

scientific knowledge, but is an area that is glossed over by many

researchers. As expressed by Willson (1980, pp. 8-9),

Only 37% of the AERJ studies explicitly reported reliability

coefficients for the data analyzed...[and another 18%

reported only indirectly through reference to earlier

research.... [U]nreported [reliability coefficients] in

almost half the published research is... inexcusable at this

late date.

What Does Reliability Mean?

Reliability can be defined as, "the degree to which test

scores are free from errors of measurement" (American

Psychological Association, 1985, p. 19). When measuring phenomena

of interest, two types of variance can be generated: systematic or

unsystematic. The former is associated with real differences and

is likely to be replicated in future measurements. Systematic

variance, therefore, is often referred to as "good variance."

Unsystematic variance, however, represents variability that is

likely to be indigenous only to the measurement or sample being

investigated and will probably not replicate in future

measurements or will vary in unpredictable ways. Thus,

unsystematic variance, or error variance, is considered "bad

5



Generalizability Theory 5

variance" and is one of many random effects that psychometricians

attempt to reduce or eliminate when collecting observations or

measurements.

Properties of Reliable Data

The reliability of scores directly corresponds to the degree

to which error is present or absent in a behavioral measurement.

As such, reliability is a concept that inures to the scores

generated by a particular measuring instrument and not to the

instrument itself. Thus, Rowley (1976) noted that "an instrument

itself is neither reliable nor unreliable.... A single instrument

can produce scores which are reliable and other scores which are

unreliable" (p. 53). Similarly, Eason (1991, p. 84) argued:

Though some practitioners of the classical measurement

paradigm speak of reliability as a characteristic of tests,

in fact reliability is a characteristic of data, albeit

data generated on a given measure administered with a given

protocol to given subjects on given occasions.

Thus, the scores of a particular group of individuals are reliable

or unreliable, not the measuring instrument used to generate the

scores. Unfortunately, based on the common and thoughtless usage

of the phrase "the test is reliable", many researchers have

erroneously become to believe that tests are reliable. As

indicated above, nothing could be more untrue.

Since it is the scores of a group of measured individuals

that ultimately impacts reliability, the consistency of the sample

used to estimate reliability is critical. Like all statistics,

6



Generalizability Theory 6

reliability coefficients are affected by the variability of the

scores in the sample of chosen individuals. Reliable data are

generated by maximizing the systematic variance (e.g., real

differences between people or groups) and minimizing the variance

attributed to random sampling or measurement error (e.g., variance

that will not replicated in future samples and is specific to only

the sample under investigation).

As a group of individuals becomes more heterogeneous, the

real or systematic differences between the individuals becomes

more pronounced. This divergence in the systematic variance of the

group typically leads to more variability in the set of scores.

Consequently, the increased score variance for the set of

individuals leads to higher reliability for the group. Since more

heterogenous groups of individuals tend to generate more variable

scores than homogenized groups, the same measure administered to

more heterogenous or homogeneous groups will likely yield scores

with differing reliabilities. By conceptualizing reliability in

this manner, it becomes obvious why it is incorrect and

inappropriate to use the statement "the test is reliable," as the

same test can produce radically different results when

administered to different groups of people.

Indeed, Vacha-Haase (1998) has proposed an important new

technique for investigating the variability in score reliability:

"reliability generalization." Reliability generalization can be

used (a) to characterize the variability in score reliability

across studies and (b) to identify those design features that best

7
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explain or predict the variations in score reliabilities across

studies.

Classical Test Theory

History and Theoretical Underpinnings

The concept of reliability has been explored since around the

turn of the century. The area of inquiry related to estimating the

reliability of data, however, has been slow to develop in

comparison to techniques utilized to analyze substantitive data.

The groundwork for what has recently been called classical test

theory was originally articulated by Thorndike (1904). Thorndike

argued that reliable information about individuals can be obtained

by collecting measurements that have a maximum amount of

systematic variance and a minimum amount of measurement error

variance. This theoretical conception of reliability was

operationalized in a mathematical formula offered by Spearman

(1907) called the "true score" model of measurement.

Spearman (1907) extended the notion proffered by Thorndike

(1904) to include the influences of both random and measurement in

explaining a score that a given respondent will exhibit on a given

occasion. As noted by Crocker and Algina (1986, p. 107), "The

essence of Spearman's model was that any observed score could be

envisioned as the composite of two hypothetical components--a true

score and a random error component." Thus, the true score formula

can be written in the equation

Observed Score = True Score + Random Error.

In the Spearman (1907) model, a true score refers to the

8
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average score that the same respondent will obtain over infinite

administrations of the same version of a given test (Crocker &

Algina, 1986). Thus, a true score indicates the actual performance

of a particular respondent and is, by definition, a perfectly

reliable score. An observed score, however, is the score that a

respondent actually generates on a given administration of a test.

This observed score may or may not be sufficiently reliable to be

useful. Random error is composed of random measurement error that

can accentuate or attenuate a given respondent's true score. Based

on the positive or negative influences of the random error

component, it is possible for a respondent's observed score to be

higher or lower than the same respondent's true score.

Consider the following example. Suppose the respondent of

interest is a sixth grade math student who is capable of correctly

answering 16 out of 20 questions on a math test (the student's

true score). Now suppose the student is ill the day of the exam,

and fluctuates throughout the exam in cognitive functioning

ability, and therefore randomly misses four questions that could

have been answered correctly by this student. This situation

illustrates the negative influence of random error as the

student's true score is higher than the observed score. Suppose

that on another occasion with the same exam, the respondent

guessed correctly on two items that should have been missed. This

condition represents the positive effect of random error, as the

student's true score is lower than the observed score. Both

positive and negative effects of random error lead to unreliable

9



Generalizability Theory 9

scores and potentially misleading estimates of the respondents'

abilities.

Reliability Estimates in Classical Test Theory

The following cursory review of classical test theory

reliability estimates presumes some knowledge of the subject

matter and it not intended to be a thorough coverage of the

material. Interested readers are referred to Arnold (1996) and

Eason (1991) for more detailed explanations. As noted previously,

classical test theory partitions observed score variance into only

two components, true score variance and random error variance.

Consequently, it is possible to examine only a single source of

measurement error at any given time. This poses a serious dilemma

for the researcher, since in reality several types of measurement

error can exist concurrently. In classical test theory, it

possible to consider estimates of measurement error due to

inconsistency in forms (equivalence), or observers (inter-rater

agreement), or sampling the item domain (internal consistency or

split-half) or time (test-retest or stability) (Arnold, 1996).

Only one measurement error influence can be considered in a given

analysis.

Each type of reliability estimate (e.g., time, observers) can

be used to determine the degree to which true scores deviate from

observed scores. The problem, however, is that classical test

theory is unable to examine inconsistencies in test forms, raters,

items, or occasions simultaneously. That is, classical test theory

for example makes the potentially erroneous assumption that the

i0
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error observed in calculating a stability coefficient is the same

error indicated by calculating an internal consistency alpha. As

stated by Thompson and Crowley (1994, p. 3),

An embedded assumption of many researchers using the

classical score approach is that sources of error

substantially overlap each other (e.g., the 15% of error

from a test-retest analysis is the [sic] essentially the

same [emphasis in original] error as the 10% or 15%

measurement error detected in an internal consistency

analysis) and that the sources of error do not interact to

create additional error variance.

Much to the dismay of the researcher utilizing classical test

theory reliability estimates, error components corresponding to

items, occasions and forms are actually distinct sources of

variability and often are not equivalent. Further, in addition to

only examining one source of error variance at a time, classical

test theory also fails to examine the unique contribution of the

interaction sources of measurement error variance (e.g., occasions

with items, items with forms). As noted by Thompson (1991, P.

1072),

...a practitioner may do classical internal consistency,

test-retest, and equivalent forms reliability analyses,

and may find in all three that measurement error

comprises 10% of score variance. Too many classicists

would tend to assume that these 10 percents are the same

and also tend to not realize that in addition to being
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unique and cumulative, the sources may also interact to

define disastrously large interaction sources of

measurement error not considered in classical theory.

The effects of these assumptions are all the more

pernicious because of their unconscious character.

Thus, classical test theory does not consider sources of

measurement error simultaneously nor does it examine the effects

of their unique interaction effects.

Estimates of reliability in classical test theory are

represented in the form of reliability indexes or reliability

coefficients (Arnold, 1996). A reliability index is simply the

Pearson product moment correlation coefficient between observed

scores and true scores (Crocker & Algina, 1986). In order to

examine the amount of shared variance between observed scores and

true scores, it is necessary to square the Pearson r between them.

This statistic, termed a reliability coefficient, indicates the

percentage of true score variance accounted for by the observed

scores. Coefficient alpha, another type of reliability

coefficient, also indicates the amount of shared variance between

observed and true scores.

Since several estimates of reliability involve computing

correlation coefficients between two sets of scores (i.e., split-

half and test re-test), it is necessary to first square the

Pearson r prior to reporting it as a reliability coefficient.

Regrettably, too few researchers recognize that reliability

coefficients are squared statistics and that the Pearson rs

2



Generalizability Theory 12

typically used to estimate test retest and split-half reliability

are instead reliability indices (Arnold, 1996). Errors such as

these only exacerbate the problems incurred in employing classical

test theory in analyzing score reliability and, when coupled with

the problems previously described, predisposes the wary researcher

to search for alternative methods of examining the dependability

of behavioral observations.

A Heuristic Example Using Classical Test Theory

In an effort to facilitate greater understanding of classical

test theory and thus its limited usefulness in the social

sciences, a small heuristic data set will be explored. Suppose the

data contained in Table 1 was generated by a hypothetical

psychological instrument that measures the degree of happiness

exhibited by a respondent. In an attempt to develop a marketable

instrument, the psychometrician develops an instrument that is

short (five items), easy to administer, and which adequately

represents the item domain of interest. The psychometrician uses a

seven-point Likert-type scale in constructing the five item test,

thus generating item responses ranging from 0 to 6. In an effort

to examine some of the psychometric properties of interest, the

same version of the instrument is administered to one group of 10

people on four separate occasions. Thus, based on the reliability

estimates available in classical test theory and the given

information, the psychometrician can examine two types of

reliability: stability over time (test-retest) and accurately

sampling the item domain (internal consistency). Since the

13
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researcher has elected to utilize classical test theory in

ascertaining these reliability estimates, it is not possible to

examine these measurement error influences simultaneously, nor it

is possible to determine the additional separate and unique

measurement error variance introduced by the interaction effect of

time with internal consistency. Consequently, the classical theory

researcher must calculate each reliability estimate separately.

Insert Table 1 About Here

A quick perusal of the results presented in Table 2 is

disconcerting to the hopeful researcher. As a result of examining

the reliability of the scores based on their stability and

internal consistency, the psychometrician has generated ten

different reliability coefficients. The internal consistency

alphas on occasion three and four appear promising (.7974 and

.8393, respectively) but the alphas on occasion one and two are

disastrously low (.4799 and -.2128, respectively). The alpha on

occasion two is even negative (see Reinhardt, 1996), indicating

that the scores are less reliable than if they were simply

generated at random (negative alphas, even less than -1, are

possible with coefficient alpha and indicates a serious

psychometric problem). Thus, based on examining reliability in

terms of inconsistencies in items, the researcher cannot conclude

with any certainty that the item domain was adequately represented

by the five happiness items included on the instrument and is left

14
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to employ other methods of assessing the quality of the derived

scores.

Insert Table 2 About Here

Similarly to the internal consistency alphas, the stability

coefficients are quite variable and range from a low of .0705

(occasion two with four) to a high of .3547 (occasion one with

four). Obviously, the budding psychometrician has a major dilemma

as both types of reliability estimates provide divergent and

contradictory results. If the researcher had simply examined the

coefficient alpha on occasion four (.8393), a different conclusion

may have been reached. After examining all reliability

coefficients in respect to each other, the researcher is left

befuddled and perplexed as to the true reliability of the scores

generated by the instrument. The despondent psychometrician avidly

researches developments in reliability theory and discovers that

another theory of score reliability, generalizability theory, is

superior to classical test theory and might help uncover the true

characteristics of the scores generated by the newly devised

happiness instrument.

Generalizability Theory

Generalizability theory (G theory), much like classical test

theory, is a theory of the dependability of a set of behavioral

observations or measurements. G theory, however, considers

simultaneously both multiple sources of measurement error variance
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and also their unique interaction effects (Eason, 1991). As stated

by Thompson and Crowley (1994, p. 2),

Generalizability theory subsumes and extends classical score

theory. "G" theory is able to estimate the magnitude of

multiple sources of error simultaneously. Therefore, sources

of error variance and interactions among these sources can be

considered simultaneously in a single generalizability

analysis. This is unlike classical test score analyses which

allow for only a single source of error to be considered at

one time....and does not consider the possible, completely

independent or separate interaction effects of the sources of

measurement error variance.

Thus, the power of G theory lies in its ability to examine

multiple sources of measurement error variance and their unique

interaction effects simultaneously while allowing researchers to

accurately assess the dependability of scores in complex

measurement designs.

History and Background

Although most major developments in G theory were made

several decades ago in the early 1970's, the original groundwork

for the theory can be traced even further back to the work of Hoyt

(1941), Lindquist (1953) and Medley and Mitzel (1963). Each of

these theorists understood the limitations of classical test

theory and explored new ways to examine reliability that would

allow the simultaneous examination of several sources of

measurement error.

16
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The work of Hoyt (1941) is most readily comparable to modern

G theory and indicates the first effort to partition score

variance into more than one component at a time. Hoyt was

influenced by the work of Rulon (1939) who developed a short

method of assessing internal consistency reliability through

split-half analysis. Hoyt noted that if the odd-even split was "an

unlucky one" (Hoyt, 1941, p. 153), the derived split-half

coefficient may be an under- or over-estimate of the true

dependability of the scores. Thus, Hoyt developed a method which

allowed score variance to be partitioned into three components:

variance among individuals, variance among items, and random error

variance. This was a radical departure from classical test theory

which partitions score variance into only true score and random

error variance.

The method developed by Hoyt (1941) directly utilized

analysis of variance (ANOVA) to estimate the reliability of

scores. The main shortcoming of the method, however, is that even

though variance is further partitioned into components

corresponding to items, individuals and error, the estimate

generated by the Hoyt method is exactly equal to the estimate

generated by calculation of coefficient alpha, developed later by

Cronbach (1951). Further, the Hoyt method can be employed with

only dichotomously scored answers (i.e., right versus wrong) which

limits its pragmatic value. Thus, after the development of

coefficient alpha (which can handle dichotomously or

polychotomously scored items), the Hoyt method had limited utility



Generalizability Theory 17

in the social sciences since it was more difficult to calculate

and was appropriate only for certain types of items. The important

contribution of Hoyt's method to the development of G theory,

however, is that score variance was decomposed into more than two

constituent components.

The following example of the Hoyt (1941) method will serve as

a basis for understanding the more complex G theory and will

further help illustrate the shortcomings of previous theories of

score reliability. Consider the following example. An instructor

gives a five item spelling examination to a group of 6 students in

which each item is classified as right (1) or wrong (0). The data

could be placed in a table similar to the one presented in Table

3.

Insert Table 3 About Here

The calculation of reliability through ANOVA involves several

steps. The first step is to calculate the sums of squares (SOS)

for individuals, items, error and total (Hoyt, 1941, p. 154). The

SOS for individuals is

1 / (tot)2 (5 tot)2
n nk

where n = number of items, k = number of individuals and tot =

total score on the test. The SOS for items is

1 E (item)2 (Y tot)2
k nk

where n = number of items, k = number of individuals, item = the

sum of each item for all individuals and tot = total score on the

18
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test. The SOS total for all individuals on all items is

(/ tot) (nk / tot)

nk

where n = number of items, k = number of individuals and tot

total score on the test. The final component, SOS residual, is

computed by subtracting the SOS for items and individuals from the

total SOS. Thus, the results could be presented in an ANOVA

summary table as illustrated in Table 4.

Insert Table 4 About Here

The next step is to calculate the degrees of freedom (df) for

each component. For individuals and items, the df is the number of

items or individuals minus one. The df total is calculated by

multiplying the number of items and individuals and subtracting

one. The df residual is calculated by subtracting the df for items

and individuals from the total df (note that SOS and df are always

cumulative in ANOVA). The formula for the respective df

calculations are presented in Table 4.

The variance for each source of variation in the Hoyt method

must then be computed. In fixed effects classical ANOVA, the

variance for sources of variation are typically referred to as

mean squares (MS). For each of the sources of variation, the MS is

simply calculated by dividing the respective SOS component by the

corresponding df. The formulas for each source of variation are

also presented in Table 4.

The final step in the Hoyt (1941) method is to calculate the

19
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reliability coefficient. Remember that a reliability coefficient

is the ratio of true score variance to observed score variance.

Thus, Hoyt (1941, p. 155) delineated the reliability coefficient

as

rxx =

MS ind MSres

MShici

where MSinci = mean square individual, MSres = mean square residual.

Remember in ANOVA that the MS is a measure of variance; it is the

variance due to a particular source of variation. Thus, the Hoyt

reliability coefficient is consistent with the classical test

theory notion of reliability, as reliability is defined as the

ratio of true score variance (variance due to individuals with the

influence of random error removed) divided by the variance due to

individuals.

The results of the Hoyt method using the second set of

example data are presented in Table 5. Based on the results

presented in Table 5, the reliability coefficient for the example

data can be calculated as

rxx =

.2133 .1967

.2133

which generates a reliability coefficient of .0781. Note that this

value is a reliability coefficient, as it is the ratio of two

variances and is thus in a squared metric. Based on the

calculations provided by the Hoyt method, the researcher is able

to say that the scores of the six students on the spelling exam

20
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are very unreliable.

Insert Table 5 About Here

The results presented in Table 5 (Hoyt method) can then be

compared with a classical test theory coefficient alpha (Cronbach,

1951). Both analyses examine score variability due to the

influence of the test items. In the Hoyt (1941) method, the

variance associated with the test items was partitioned out of the

total score variance. In calculating a coefficient alpha, the

ratio of item score variance to test score variance is evaluated.

Both statistics generate an estimate of score variability due to

the inconsistencies in items. As is illustrated in Table 6, the

reliability estimates generated by both statistics are exactly

identical. Although the Hoyt method provided the groundwork for

contemporaneous G theory, the manner in which it was used only

allowed researchers to examine one source of measurement error at

time. By examining Table 5 once again, the keen researcher may

notice that the SOS associated with the residual (error) term

constitutes over half of the total score variance (SOS tot ) . This

variance ambiguously dubbed 'residual' in the Hoyt method can be

partitioned further to account for other influences of measurement

error. Further partitioning the error term would potentially

reduce the MS residual and thus provide a larger reliability

coefficient.

21
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Insert Table 6 About Here

Logic and Mechanics of G Theory

Cronbach, Glaser, Nanda, and Rajarantam (1972) extended the

work of Hoyt (1941) and others to provide researchers with a

modicum of partitioning measurement error into constituent

components and interaction effects. Jaeger (1991, p. ix) stated,

...Cronbach and his associates... effectively demonstrated

that it was no longer necessary to restrict decompensation of

variation in individual's observed test scores to two

components--variation attributed to true differences among

individuals, and variation attributed to a conglomeration of

systematic and random sources.... Indeed, this latter

component of variation could be dissected further to gain an

understanding of the systematic sources of variation that

contributed to what we heretofore considered an

undifferentiable mass, simply "error."

Thus, G theory recognizes that multiple sources of error are

present in behavioral observations and provides a manner in which

researchers can further partition error variance into smaller

components that account for systematic and unsystematic sources of

variation.

In G theory, unlike classical test theory, a behavioral

observation is considered only one sample of behavior from an

infinite universe of admissible observations. The universe,

therefore, is comprised of all the potential measurements that
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would be a direct substitute for the observation under

investigation. The particular sample or observed score is not the

focus of the generalizability analysis; rather, the analysis

focuses on how well a particular sample of behavior generalizes to

the larger universe of admissible observations. As stated by

Cronbach et al. (1972, p. 15),

The score... is only one of many scores that might serve the

same purpose. The [researcher] is almost never interested in

the response given to particular stimulus objects or

questions, to the particular tester, at the particular moment

of the testing. Some... of these conditions of measurement

could be altered without making the score any less

acceptable....

The focus of the dependability analysis is subsequently altered

and, rather than being interested in how well observed scores

represent respondent true scores, researchers are interested in

assessing how well observed scores generalize to a "defined

universe of situations" (Shavelson, Webb & Rowley, 1989, p. 922).

Cronbach et al., (1972, p. 15, emphasis in original) summarized

this notion by stating,

The ideal datum... would be something like the person's mean

score over all acceptable observations, which we shall call

his [sic] "universe score." The investigator uses the

observed score or some function of it as if it were the

universe score. That is, he [sic] generalizes from sample to

universe. The question of "reliability" thus resolves into a

23
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question of accuracy of generalization, or generalizability.

[Emphasis in original]

Measurement Objects and Facets. Generalizability studies

first involve defining the score population of interest, called

the universe of admissible observations. The universe of

admissible observations involves both the "object of measurement"

and the "facets of measurement." The object of measurement in a G

study is a source of variability that the researcher deems real

and legitimate, and which arises from true, systematic

differences. It is also the score variance about which the

researcher wishes to generalize to the larger universe. In the

social sciences individuals are usually employed as the objects of

measurement since researchers typically believe that people are

different and that differences across people are real and

systematic (Eason, 1991). As noted by Thompson (1991), however,

people do not have to be the objects of measurement. Thompson

(1991, p. 1073) offers an excellent example of a situation in

which people are not the focus of the analysis:

...person need not be the object of measurement in a [G]

study. Often people constitute the object of measurement,

because our model of reality says to us that people really

are different, so that observed differences in people

represent true variance.... One example... presumes the use

of mice, so popular with our colleagues in biology and

medicine, that have been inbreed over many generations so

that they are genetically almost identical. Our model of

24
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reality says that any observed differences in these mice as

individuals represents measurement error and not systematic

variance. We could then, for example, declare occasion as our

object of measurement....

It is critical to understand that although researchers are

typically interested in the individual performance differences of

people, there are other sensible alternatives for the object of

measurement (namely anything that is believed to generate

systematic variance such as schools, businesses, or occasions).

The universe is further composed of sources of error

variation or facets (Shavelson & Webb, 1991). Each facet in turn

is composed of a defined number of conditions, or levels of the

facet. Facets can include any source of measurement error

variance, but forms, items, occasions, and raters are typically

the most popular facets utilized in the social sciences. If a

researcher was interested in examining the internal consistency of

test items using G theory, for example, the universe of admissible

observations would include all possible individual test items. If

the test items were defined as a facet, or source of measurement

error variation, and the number of conditions or levels in the

item facet would be constrained only by the number of test items

that the researcher desired to include in the analysis. Thus, the

number of facets included in a G study are only those sources of

measurement error variance of interest to the researcher, but

could potentially number as many or as few as desired.

By definition the object of measurement cannot be a facet.
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Facets contain measurement error variance and objects of

measurement contain real or systematic variance. By employing G

theory in an analysis, a researcher is attempting to partition the

score variance associated with a facet (error) from the score

variance accounted for by the object of measurement. The object of

measurement, therefore, is analogous to the concept of true score

variance in classical test theory as both represents the variance

that the researcher considers real and about which the researcher

wishes to make statements.

In a G study researchers are primarily interested in

examining and thus controlling for any source of variation that

might affect score variance in an unpredictable or unreplicable

manner. The focus of the analysis is an individual's universe

score, or the individual's score over all possible items, forms,

occasions, or raters. Obviously, it is impossible to calculate the

universe score, so it must be estimated in the G study. As stated

by Webb, Rowley and Shavelson (1988, p. 83), the researcher

would like to know an individual's average score over all

combinations of conditions (all possible forms, all possible

occasions, all possible items).... Unfortunately, this ideal

datum cannot be known; it can only be estimated from a sample

of items from a sample of forms on a sample of occasions.

This is where error, because of the particular form,

occasion, and items chosen, occurs.

Absolute Versus Relative Decisions. Another important

distinction between G theory and classical test theory is that G
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theory differentiates between relative and absolute decisions.

Relative decisions are those decisions which involve the relative

standing of individuals in regard to one another and which are

based solely on considering the stability of a person's rank

within a group. This is the only type of decision rendered in

classical test theory and is influenced only by the position of

the objects of measurement in respect to one another. A relative

decision involves making statements such as "We are giving exactly

one scholarship each year to the person scoring highest each year

on a scholarship examination, and we do not care that across years

the highest score may vary quite a lot." In rendering relative

decisions, the focus of the decision is only on the ranking of

individuals within a group and no attention is given to scores in

relation to a cutoff score or percentage of items correct. A

Generalizability coefficient is the reliability coefficient used

to evaluate scores in a relative decision context.

Absolute decisions, in contrast, involve the consistency of

placement in relation to a standard or cut-off score. An example

of an absolute decision involves admission into a university.

Students entering most universities are required to attain a

minimum score on an entrance examination (usually the Scholastic

Aptitude Test) to gain admission. A given respondent will be

offered admission into the chosen university only if the observed

score surpasses the minimum cutoff score established by that

university regardless of how well other students performed on the

same examination. Thus, in rendering absolute decisions, the focus
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of the decision is on the specified standard or cutoff score and

the ranking of individuals within a group.

In generalizability theory, absolute decisions are examined

by computing a phi coefficient. A ohi coefficient evaluates the

stability of an observed score in relation to a fixed cutoff or

standard. The phi coefficient is calculated by comparing the

systematic variance (i.e., the variance associated with the object

of measurement) to all relevant main effect error components and

their interaction effects. Similarly to g coefficients, phi

coefficients are in a squared metric and range from 0 to 1.00. A

noteworthy distinction between G theory and classical test theory

involves absolute decisions and the phi coefficient: Classical

test theory does not evaluate absolute decisions.

Fixed Versus Random Facets. An important concept in G theory

involves distinctions between fixed and random facets. [The object

of measurement is always considered a random effect.] When

deciding whether a given facet is random or fixed, it is necessary

to be familiar with the notion of exchangability (Webb, Rowley &

Shavelson, 1988). A facet is considered random if the researcher

is willing to exchange the conditions in the sample with any other

conditions in the universe of interest. Suppose for example, that

an instructor is conducting a G study and is interested in

examining the items on a statistics exam. The instructor has

generated a sizable item pool through 20 years of teaching and

extracts 40 items for the exam from an item pool that totals 300.

The items facet in this type of G study would be considered random

28



Generalizability Theory 28

if the instructor is readily willing to exchange the 40 chosen

items with any other set of 40 items in the item pool. A facet is

considered random, therefore, if and only if the chosen sample of

observations can be exchanged with another equally sized sample of

observations without a loss of information.

A fixed facet, however, exhausts the conditions available in

the universe of interest, or at least includes all the conditions

of interest to the researcher. In the case of a fixed facet, the

researcher does not desire to generalize beyond the conditions

included in the G study. Using the example presented in the

previous paragraph, the items facet would be considered fixed if

the researcher was not willing to exchange another sample of 40

test items with any other set from the item pool. Webb, Rowley and

Shavelson (1988) have recommended that if a question arises as to

whether a facet is fixed or random, the researcher should first

conduct a G study with the questionable facet considered random.

After examining the variance component for the questionable facet,

the researcher should consider the facet fixed only if the

variance component is very large (thus indicating that performance

is differential across conditions of the facet).

Crossed Versus Nested Designs. Another important concept in G

theory is the notion of crossed and nested designs. A design is

considered to be crossed when all of the conditions in one facet

are observed with all conditions of another source of variation.

For example, a crossed design would occur in a persons-by-

occasions-by-items design when all persons in the G study respond
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to the all of the same items on all of the same occasions. Thus,

all of the conditions in each facet are combined with every

condition of another facet.

Conversely, a design is considered nested when two or more

conditions of the nested facet appear within one and only one

condition of another facet. For example, a generalizability study

might be done with 20 people as the object of measurement. Each

respondent completes 10 English and 10 History short-answer

questions on each of two occasions. This is the items-nested-

within-subjects-by-time design. That is, subjects and occasions

are "crossed," since both subjects are evaluated on both

occasions. However, the two sets of 10 items are respectively

"nested" within the two subject areas (i.e., the 10 English items

are never administered as part of the History test, nor are the 10

History items ever administered as part of the English test). G

theory can be employed with both nested and crossed facets or any

combination of crossed and nested facets, however, there are

statistical advantages to using crossed designs whenever possible.

Partitioning Variance in G Theory. A critical aspect of G

theory is the manner in which score variance is partitioned. G

theory invokes an ANOVA framework in partitioning the score

variance into its constituent components. An observed measurement

is decomposed into one component representing the variance due to

the object of measurement (universe score) and one or more

components representing the variance due to measurement and random

error. Thus, G theory utilizes the exact logic employed in ANOVA
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to partition variance. Just as a multi-way ANOVA examines the

influence of one or more independent variables and their unique

and cumulative interaction effects on a dependent variable, G

theory can examine the influence of one or more sources of

measurement error and their unique and cumulative interaction

effects.

The partitioning of score variance in G theory can further be

illustrated using the logic invoked in simple and factorial ANOVA.

In a simple one-way ANOVA, variance on the dependent variable is

partitioned into two components, between and within. The between

component represents the portion of variance on the dependent

variable that the researcher believes is systematic while the

within component represents the portion of variance on the

dependant variable that is due to error and will most likely not

replicate in future analyses. This concept of partitioning

variance into only two components is analogous to the

decomposition of score variance in classical test theory, as

variance is partitioned into true score (systematic) variance and

error variance.

Factorial ANOVA, however, allows researchers the opportunity

to further partition the variance on the dependent variable. In

factorial ANOVA, researchers recognize that multiple factors and

the unique and cumulative effects of their interactions influence

the variance evidenced on the dependent variable. Factorial ANOVA

decomposes the error component of simple ANOVA into variance that

can be attributed to other factors and the interaction effects of
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these factors with one other. G theory operates in much the same

manner by partitioning the error variance manifested in classical

test theory into constituent components associated with sources of

measurement error and their interaction effects.

The variance partitions in G theory are unique, separate and

perfectly uncorrelated, just as they are in classical ANOVA. When

partitioning score variance in G theory, the researcher partitions

out the variance associated with the object of measurement. The

remaining error component can then be subdivided into components

corresponding to the influence of items, occasions and forms. For

example, suppose a psychometrician is interested in examining the

influence of test items (10), forms (3), and occasions (3) on the

performance of a group of individuals. The score variance could be

first partitioned into two components, one corresponding to the

individuals (p) and one which is simply labeled error. The second

partition would subdivide the error component into the pooled main

effect sources of error variance and the pooled interaction

sources of error variance. The third partition would further

subdivide the pooled main effect component into the score variance

associated with the three main effects of items (i), forms (f) and

occasions (o). The pooled interaction variance would be subdivided

into two-way, three-way, and four-way effects, and then these

would be further partitioned into their specific elements: (a) pi,

pf, po, if, io, fo, for two-way partitions, (b) pif, pio, pfo, ifo

for three-way partitions, and finally (c) the quadruple

interaction of persons with items, forms and occasions compounded
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with random error (pifo,e). Notice that in G theory, unlike

factorial ANOVA, the highest order interaction effect is

confounded with random error.

Generalizability Studies

As noted earlier, a G study is intended to estimate the

variance associated with the sources of measurement error that are

included in the universe of admissible observations defined by a

given researcher. Once the universe is defined and the sources of

error are identified, it is possible to estimate the relative

contribution of each source of error by generating variance

components. Variance components are the building blocks of both

ANOVA and G theory, but due to an increased emphasis on using

ANOVA for statistical significance testing (Thompson, 1989),

variance components in ANOVA were abandoned for mean squares

(Eason, 1991; Guilford, 1950). Since statistical significance

testing is not the focus of a G study, F tests have little utility

in this approach; thus, mean squares as used to estimate the

variance components rather than to test statistical significance

(Brennan, 1983).

There is a variance component for each main effect and each

interaction source of measurement error variance. Using the

example described in the classical test theory section of the

present paper, the derivation of the variance components can be

illustrated. Recall that the psychometrician in the previous

example was interested in developing an instrument that assessed a

respondent's degree of happiness. This researcher intended to
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develop a short questionnaire of five items so that the

administration and scoring of the instrument would be relatively

painless. Recall also that after developing the instrument, the

psychometrician administered the same form of five items to a

group of 10 individuals on four separate occasions. This data was

presented in Table 1.

Using G theory, it is possible to examine the multiple

sources of error variance simultaneously. The researcher has

defined the object of measurement as the group of individuals

(10), and the universe of admissible observations as the items on

the test (5) and the occasions of administration (4). Thus, this

design can be labeled a fully crossed pxixo (10x5x4) random

effects generalizability analysis. The facets are considered

random in this example because the researcher believes that the

occasions and items could be exchanged with another sample of

occasions and items in the universe without a substantial loss of

information.

The formulas for the relevant calculations will not be

described in the present paper, but interested readers are

referred to Cronbach et al. (1972), Brennan (1983) and Thompson

and Crowley (1994) for more complete descriptions. The method of

calculating variance components in the present paper is extracted

from Thompson and Crowley (1994). Since the score variance in the

example has been partitioned into three main effect (p, o, i) and

four interaction components (po, pi, oi, poi,e), it is possible to

compute the SOS for each source of variation.
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The SOS values for each source of variation are then

transformed into mean squares (MS) by dividing the SOS by the

relevant degrees of freedom (calculated as k-1 where k = number of

items, occasions or persons for main effects and as the product

the of involved main effects for interaction effects). The mean

squares for each source of variation is then transformed into a

variance component for scores by invoking a series of additive and

divisive properties that remove the influence of the interaction

mean squares from the main effects and which removes the error

component from the interaction mean squares. The results of these

calculations for the example data are presented in Table 7.

Insert Table 7 About Here

An important point to note prior to discussing the remainder

of the calculations is that computed variance components in G

studies can be negative even though such an occurrence is

impossible conceptually since variance is a squared statistic and

should always be positive. Due to the manner in which the variance

components are calculated, however, it is possible for variance

components in G studies to be less than zero. As illustrated in

Tables 7 and 8, several of the score variance components are in

fact negative.

A negative variance component typically indicates a problem

in either the size of the sample utilized in the G study or in a

misspecification of the model employed. Shavelson, Webb, and

Rowley (1989, p. 927) proclaimed that,
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components [is] the Achilles heel of GT and sampling theories in

general. Especially with small sample sizes, ANOVA estimates of

variance components are unstable and may even be negative." The

magnitude of the negative variance component is critical as very

small negative variance components (which typically indicate

sample size problem) are less disconcerting than very large

negative variance components (which typically indicate a model

misspecification error). Since the three negative variance

components in the present example are small in magnitude, the

researcher can attribute the cause to an unusually small sample

size which was chosen here only for heuristic value.

There are two general ways to handle negative variance

components: One is to immediately convert the negative variance

component to zero and to use the value of zero in all subsequent

calculations (Cronbach et al., 1972); the other option is to

convert the variance component to zero but to use the negative

value in all subsequent computations (Brennan, 1983). There are,

of course, pros and cons to using each strategy. Research has

indicated that using zero in place of a negative variance

component will produce a biased estimate of the g or phi

coefficient (Webb, Rowley, & Shavelson, 1988). Using the negative

variance component does produce an unbiased estimate, but as

stated by Webb, Rowley and Shavelson (1988), "in neither case is

it statistically comfortable to change estimates to zero" (p.

927). Researchers must use their discretion when converting

negative variance components to zero and remain cognizant that
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doing so may bias G study results.

After computing the variance components for scores, the

variance components for means must be calculated by multiplying

each variance component by the frequency with which it occurs in

the analysis. The results of these transformations are presented

in Table 8. Notice that the variance component for items is

multiplied by five since there are five items on the instrument.

Similarly, the score variance component for occasions is

multiplied by four since there were four occasions. The object of

measurement variance component is slightly different, however, as

each person is believed to truly vary and thus the frequency for

the persons variance component is set to 1. The frequency for the

relevant interaction variance components are derived by simply

multiplying the frequency of the associated sources of error (just

as would be done to calculate the degrees of freedom in a

factorial ANOVA).

Insert Table 8 About Here

After transforming the score variance components into mean

variance components it is possible to examine the percentage of

score variance that is accounted for by the objects of

measurement, facets and interaction effects. These calculations

are presented in Table 9. For a given study to demonstrate

generalizable scores, the object of measurement variance component

must be very large and the measurement error variance components

must be very small.
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Insert Table 9 About Here

Notice that the G coefficient and the phi coefficient utilize

different variance components in their computations. The G

coefficient includes only those sources of measurement error that

involve the object of measurement (p, po, pi, and poi,e).

Conversely, the phi coefficient includes all relevant main effect

and interaction sources of measurement error variance. It is

important to note, therefore, that the phi coefficient will always

be exactly equal to or smaller than the G coefficient since more

sources of measurement error are included in the denominator of

its computation. Unfortunately in the present example both

coefficients are zero and it is impossible to illustrate magnitude

differences in the two coefficients.

After examining the previous three summary tables, the ardent

and hopeful researcher is frustrated and disconcerted by the

attained results. The negative variance components for persons,

occasions and items possibly indicates that the sample size was

too small to generate useful information. The researcher also

noticed that the variance components for the persons-by-occasions

interaction (.1784) was fairly large (62.66%), indicating that the

participants performed differentially across occasions in which

the instrument was administered. Unfortunately for this

researcher, the G study has uncovered some serious flaws in the

measurement approach. If the researcher had failed to employ G
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theory, however, the researcher might have been tempted to report

the acceptable coefficient alphas generated on occasions three and

four (see Table 2). The researcher does have one avenue of

recourse, however, as it is now possible to employ a D study to

explore how changes in the measurement protocol will affect the

generalizability coefficients.

Decision Studies

A D study involves "what if" type analyses to discern the

most efficient or cost effective measurement protocol. D studies

are another powerful feature of G theory, as researchers are able

to discern whether or not it will be more cost effective (in terms

of the consequential effect on the G or phi coefficient) to

administer a different number of items or forms on a different

number of occasions. As stated by Eason (1991, p. 94), "D studies

use variance components information from the G study to facilitate

the design of a measurement protocol that both minimizes error

variance and is most efficient, i.e., that yields the most

reliable scores with the least effort."

It is important to note in D studies that only the facets

included in the G study may be used in the D study. In the

previous example where items and occasions were facets, it would

not be possible to examine the influence of a forms facet unless

that facet was included in the original G study. Similarly, it is

also important to note that all of the facets included in the G

study do not have to be used in the D study.

In a D study a researcher alters the influence of a facet by
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changing the number of conditions in the facet of interest. For

instance, in the previous example five items were utilized in the

study. A D study analysis allows the researcher to examine the

effects on the G and phi coefficients if the items are increased

to 100 or decreased to two. Similarly, a D study analysis might

reveal that reducing the number of occasions from four to two will

increase the coefficients of interest to the desired level. Thus,

it is possible for a given researcher to state a desired level of

generalizability (e.g., .75) and then alter the number of

conditions in the facet until the desired level is attained.

Since the results of the example G study were less than

desirable, the present author only performed one alteration of the

measurement protocol to simply illustrate to the readers the power

of D studies and the manner in which they are completed. By

increasing the number of test items from five to 10 and increasing

the number of occasions from four to seven, a G coefficient of

.4041 and a phi coefficient of .4012 were attained. These values

are still less than desirable, but the power of this approach is

evident: it is possible to examine the costs and benefits of

altering the number of items and occasions until the desired level

of generalizability is achieved. Interested readers are referred

to Shavelson and Webb (1991) and Cronbach et al. (1972) for more

information on D studies.

Summary and Conclusions

The present paper has illustrated that G theory, which

simultaneously considers multiple sources of measurement error
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variance and their unique and cumulative interaction effects, is

superior to classical test theory. G theory more closely honors

the model of reality in which researchers desire to generalize

their results. Since reality is complex and composed of multiple

sources of error, the research and analytic methodology that is

employed in conducting analyses must also be multifaceted and able

to examine multiple sources of measurement error and their

interaction effects. The power and far reaching applicability of G

theory can be illustrated by Jaeger's (1991. p. x) statement,

"Thousands of social science researchers will no longer be forced

to rely on outmoded reliability estimation procedures when

investigating the consistency of their measurements."
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Table 1

Heuristic Data Set

Occasion 1 Occasion 2 Occasion 3 Occasion 4

Item Item Item Item
Person 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 4 4 3 5 5 4 2 4 3 3 4 3 5 2 2 2 5 3 4

2 5 6 6 4 6 2 6 4 4 4 5 3 4 3 2 1 2 3 1 1

3 6 2 4 2 5 0 6 2 4 4 2 2 3 1 4 3 2 1 2 2

4 6 2 4 3 4 4 2 0 2 2 2 2 3 3 2 4 4 2 2 2

5 1 1 6 2 1 1 6 2 6 6 2 3 1 2 2 4 4 3 4 4

6 2 1 2 3 4 3 4 2 2 4 5 5 6 6 6 6 3 3 2 6

7 6 5 6 4 4 2 6 4 6 4 2 5 3 4 4 3 2 2 3 2

8 4 0 6 4 2 0 6 4 3 1 6 6 3 4 2 4 4 5 2 5

9 0 2 5 5 4 2 0 5 4 4 4 2 6 3 2 6 6 5 4 6

10 3 3 2 5 0 3 0 4 0 6 1 1 2 1 3 2 2 3 1 4

Table 2

Summary of Coefficient Alphas and Stability Coefficients for
Table 1 Data

Occasion

Occasion Alpha One Two Three Four

One .4799 1.0000

Two -.2128 .3555 1.0000
(.1265)

Three .7974 -.3445 .3216 1.0000
(.1187) (.1034)

Four .8393 -.5956 -.2656 .4341 1.0000
(.3547) (.0705) (.1884)

Note. Test-retest reliability coefficients for administrations
one through four are included in parentheses below the reliability
indexes.
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Table 3

Example Data for Hoyt Method of Reliability Through ANOVA

Item
Student 1 2 3 4 5 Total

1 1 1 1 1 0 4

2 1 0 1 1 1 4

3 1 1 1 1 1 5

4 1 0 1 0 0 2

5 0 1 1 0 1 3

6 1 1 1 1 0 4

Total 5 4 6 4 3 22

Table 4

Example Summary Table for Hoyt Reliability Through ANOVA Method

Source SOS df MS (Variance)
Individuals SOSind k-1 SOSind/k-1

Items SOSitm n-1 SOSitm/n-1

Residual SOS (nk-1)- (n+k-2) SOS/ (nk-1) (n+k-2)

Total SOStot nk-1 SOStot / nk-1

Note. n = number of items, k = number of individuals.

Table 5

ANOVA Summary Table for Table 3 Data

Source SOS df
Individuals 1.0667 5

MS (Variance)
.2134

Items .8667 4 .2167

Residual 3.9333 20 .1967

Total 5.8667 29 .2023
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Table 6

Results of Table 3 Data Using Coefficient Alpha

Item 1 Item 2 Item 4 Item 5

Item 1
Item 2
Item 4
Item 5

1.0000
-.3162
.6325

-.4472

1.0000
.2500
.0000

1.0000
.0000 1.0000

Alpha = .0781

Note. The variance of item 3 is equal to zero so it is not
possible to Compute its correlation with other variables.

Table 7

Summary Table for G Study with Table 1 Data

Source SOS df MS MS MS + MS = Sum
p 48.7050 9 5.4117 5.4416 1.9415 + 1.8740 .0974
o 3.3050 3 1.1017 5.4416 3.7225 + 1.8740 =-6.1884
i 5.4800 4 1.3700 1.9415 3.7225 + 1.8740 =-2.4200
po 146.9228 27 5.4416 1.8740 = 3.5676
pi 69.8907 36 1.9415 1.8740 = .0675
of 44.6700 12 3.7225 1.8740 = 1.8485
poi,e 202.3973 108 1.8740 = 1.8740
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Table 8

Conversion of Score Variance Components to Mean Variance
Components

Source Sum / Product =

Score
Variance
Component / Frequency =

Mean
Variance
Component

p .0974 / (0 =4) (i=5) . -.0049 / 1 = -.0049a
o -6.1884 / (p.10)(i.5) -.1238 / 4 = -.0309a

-2.4200 / (p=10)(0=5) . -.0605 / 5 = -.0605a
po 3.5676 / (i=5) . .7135 / 4 = .1784
pi .0675 / (o =4) . .0169 / 5 = .0034
oi 1.8485 / (p.10) . .1849 / 20 = .0092
poi,e 1.8740 = 1.8740 / 20 = .0937

Note. The mean variance components denoted with an 'a' indicate
variance components that will be set to '0' for all future
calculations as recommended by Cronbach et al., (1972).

Table 9

Generation of G and Phi Coefficients

Source

Mean
Variance
Component G Coeff Phi Coeff % of Total

p .0000 .0000 .0000 0.00%
o .0000 .0000 0.00%
i .0000 .0000 0.00%
po .1784 .1784 .1784 62.66%
pi .0034 .0034 .0034 1.19%
oi .0092 .0092 3.23%
poi,e .0937 .0937 .0937 32.91%

Sum .2847 Value .0000a .0000b 100.00%

Note. a = the G coefficient is calculated by dividing the object
of measurement variance component by the object of measurement
variance component added to all the variance components that
include the object of measurement (i.e., po, pi, poi,e). B = the
Phi coefficient is computed by dividing the object of measurement
variance component by the object of measurement variance component
added to all the other variance components (i.e., o, i, po, pi,
oi, poi,e).
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